
CHAPTER 10
SEARCH TREES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH 

DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND 

MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO
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A BRIEF NOTE ON ALGORITHM COMPLEXITY 
(ASYMPTOTIC COMPLEXITY)

• A function 𝑓 𝑛 = 𝑂 𝑔 𝑛 if there exist constants 𝑐

and 𝑛0 such that 

𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑛0

• Note

• 𝑓 𝑛 is the actual time an algorithm would take 

(real/measured time)

• 𝑔 𝑛 is the expected or theoretical time

• Big-Oh is ordered, note

• 1 = 𝑂(𝑛) for all constants 𝑐

• 𝑛 = 𝑂(𝑛 log𝑛) for all constants 𝑐

• Etc

• 𝑐 and 𝑛0 are considered Big-Oh constants

• Can figure 𝑐 by finding the smallest value such that 
𝑓 𝑛

𝑔 𝑛
≤ 𝑐, 𝑛0 is where 𝑐 starts to hold
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DETERMINING ALGORITHM COMPLEXITY

• Count ALL operations

• Again….count ALL operations

• MAYDAY….count ALL operations

• Jokes aside, this is the easiest way. An operation will be expressed as a 

function of the input size (algorithm complexity)



BINARY SEARCH TREES

• A binary search tree is a binary tree 
storing entries (𝑘, 𝑒) (i.e., key-value 
pairs) at its internal nodes and 
satisfying the following property:

• Let 𝑢, 𝑣, and 𝑤 be three nodes such 
that 𝑢 is in the left subtree of 𝑣 and 𝑤
is in the right subtree of 𝑣. Then
𝑘𝑒𝑦 𝑢 ≤ 𝑘𝑒𝑦 𝑣 ≤ 𝑘𝑒𝑦 𝑤

• External nodes do not store items

• An inorder traversal of a binary 

search trees visits the keys in 

increasing order
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SEARCH

• To search for a key k, we trace a downward 

path starting at the root

• The next node visited depends on the 

outcome of the comparison of k with the key 

of the current node

• If we reach a leaf, the key is not found

• Example: find(4)

• Algorithms for floorEntry and 

ceilingEntry are similar

Algorithm Search(𝑘, 𝑣)
1. if 𝑣. isExternal
2. return 𝑣
3. if 𝑘 < 𝑣. key

4. return Search 𝑘, 𝑣. left

5. else if 𝑘 = 𝑣. key
6. return v

7. else //𝑘 > 𝑣. key()

8. return Search 𝑘, 𝑣. right
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INSERTION

• To perform operation put(𝑘, 𝑣), we search 

for key 𝑘 (using Search(𝑘))

• Assume 𝑘 is not already in the tree, and let 

let 𝑤 be the leaf reached by the search

• We insert 𝑘 at node 𝑤 and expand 𝑤 into 

an internal node

• Example: insert 5
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EXERCISE
BINARY SEARCH TREES

• Insert into an initially empty binary search tree items with the 
following keys (in this order). Draw the resulting binary search tree

• 30, 40, 24, 58, 48, 26, 11, 13



DELETION

• To perform operation erase 𝑘 , we search 

for key 𝑘

• Assume key 𝑘 is in the tree, and let 𝑣 be the 

node storing 𝑘

• If node 𝑣 has a leaf child 𝑤, we remove 𝑣

and 𝑤 from the tree with operation 

removeAboveExternal 𝑤 , which removes 

𝑤 and its parent

• Example: remove 4
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DELETION (CONT.)

• We consider the case where the key 𝑘 to be 
removed is stored at a node 𝑣 whose 
children are both internal

• we find the internal node 𝑤 that follows 𝑣
in an inorder traversal

• we copy 𝑤. key into node 𝑣

• we remove node 𝑤 and its left child 𝑧
(which must be a leaf) by means of 
operation removeAboveExternal(𝑧)

• Example: remove 3
5
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EXERCISE
BINARY SEARCH TREES

• Insert into an initially empty binary search tree items with the 
following keys (in this order). Draw the resulting binary search tree

• 30, 40, 24, 58, 48, 26, 11, 13

• Now, remove the item with key 30. Draw the resulting tree

• Now remove the item with key 48. Draw the resulting tree.



PERFORMANCE

• Consider an ordered map with 𝑛
items implemented by means of a 
binary search tree of height ℎ
• Space used is 𝑂 𝑛

• Methods find 𝑘 , floorEntry(𝑘), 
ceilingEntry 𝑘 , put 𝑘, 𝑣 , and 
erase 𝑘 take 𝑂 ℎ time

• The height ℎ is 𝑂(𝑛) in the worst 
case and 𝑂 log 𝑛 in the best case



AVL TREES
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AVL TREE DEFINITION
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• AVL trees are balanced

• An AVL Tree is a binary search tree 

such that for every internal node 𝑣

of 𝑇, the heights of the children of 𝑣

can differ by at most 1

An example of an AVL tree where the 

heights are shown next to the nodes:



HEIGHT OF AN AVL TREE

• Fact: The height of an AVL tree storing 𝑛 keys is 𝑂 log𝑛 .

• Proof: Let us bound 𝑛 ℎ : the minimum number of internal nodes of an AVL tree of height ℎ.

• We easily see that 𝑛 1 = 1 and 𝑛 2 = 2

• For 𝑛 > 2, an AVL tree of height ℎ contains the root node, one AVL subtree of height ℎ − 1 and another of 

height ℎ − 2.

• That is, 𝑛 ℎ = 1 + 𝑛 ℎ − 1 + 𝑛 ℎ − 2

• Knowing 𝑛 ℎ − 1 > 𝑛 ℎ − 2 , we get 𝑛 ℎ > 2𝑛 ℎ − 2 . So

• 𝑛 ℎ > 2𝑛 ℎ − 2 > 4𝑛 ℎ − 4 > 8𝑛 𝑛 − 6 ,… (by induction),

• 𝑛 ℎ > 2𝑖𝑛 ℎ − 2𝑖

• Solving the base case we get: 𝑛 ℎ > 2
ℎ

2
−1

• Taking logarithms: ℎ < 2 log𝑛(ℎ) + 2

• Thus the height of an AVL tree is 𝑂(log 𝑛)
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INSERTION IN AN AVL TREE

• Insertion is as in a binary search tree

• Always done by expanding an external node.

• Example insert 54:

Before Insertion
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17 78

32 50 88

48 62

After Insertion
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TRINODE RESTRUCTURING
• let (𝑎, 𝑏, 𝑐) be an inorder listing of 𝑥, 𝑦, 𝑧

• perform the rotations needed to make 𝑏 the topmost node of the three
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c=ya=z

T0 T1 T2 T3

case 1: single rotation

(a left rotation about a)

case 2: double rotation

(a right rotation about c, 

then a left rotation about a)

(other two cases 

are symmetrical)



INSERTION EXAMPLE, CONTINUED
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RESTRUCTURING
SINGLE ROTATIONS

T0

T1

T2

T3

c = x

b = y

a = z

T0 T1 T2

T3

c = x

b = y

a = z
single rotation

T3

T2

T1

T0

a = x

b = y

c = z

T0T1T2

T3

a = x
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c = z
single rotation



RESTRUCTURING
DOUBLE ROTATIONS

double rotationa = z

b = x

c = y

T0
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T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y
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T3 T1

c = z
b = x

a = y



EXERCISE
AVL TREES

• Insert into an initially empty AVL tree items with the following keys (in this 

order). Draw the resulting AVL tree

• 30, 40, 24, 58, 48, 26, 11, 13



REMOVAL IN AN AVL TREE

• Removal begins as in a binary search tree, which means the node removed 

will become an empty external node. Its parent, 𝑤, may cause an imbalance.

• Example: 44
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before deletion of 32 after deletion

remove 32



REBALANCING AFTER A REMOVAL

• Let 𝑧 be the first unbalanced node encountered while travelling up the tree from 𝑤 (parent of 
removed node) . Also, let 𝑦 be the child of 𝑧 with the larger height, and let 𝑥 be the child of 
𝑦 with the larger height.

• We perform restructure(𝑥) to restore balance at 𝑧.
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REBALANCING AFTER A REMOVAL

• As this restructuring may upset the balance of another node higher in the tree, 

we must continue checking for balance until the root of 𝑇 is reached

• This can happen at most 𝑂(log 𝑛) times. Why?
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EXERCISE
AVL TREES

• Insert into an initially empty AVL tree items with the following keys (in this 

order). Draw the resulting AVL tree

• 30, 40, 24, 58, 48, 26, 11, 13

• Now, remove the item with key 48. Draw the resulting tree

• Now, remove the item with key 58. Draw the resulting tree



RUNNING TIMES FOR AVL TREES

• A single restructure is 𝑂(1) – using a linked-structure binary tree

• find 𝑘 takes 𝑂 log 𝑛 time – height of tree is 𝑂 log 𝑛 , no restructures needed

• put 𝑘, 𝑣 takes 𝑂 log 𝑛 time

• Initial find is 𝑂 log 𝑛

• Restructuring up the tree, maintaining heights is 𝑂 log 𝑛

• erase 𝑘 takes 𝑂 log 𝑛 time

• Initial find is 𝑂 log 𝑛

• Restructuring up the tree, maintaining heights is 𝑂 log 𝑛



OTHER TYPES OF SELF-BALANCING TREES

• Splay Trees – A binary search tree which uses an 

operation splay 𝑥 to allow for amortized complexity 

of 𝑂 log 𝑛

• 2, 4 Trees – A multiway search tree where every 

node stores internally a list of entries and has 2, 3, or 

4 children. Defines self-balancing operations

• Red-Black Trees – A binary search tree which colors 

each internal node red or black. Self-balancing 

dictates changes of colors and required rotation 

operations
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