
CHAPTER 10
SEARCH TREES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND

MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

6

92

41 8

<

>

=

A BRIEF NOTE ON ALGORITHM COMPLEXITY
(ASYMPTOTIC COMPLEXITY)

• A function 𝑓 𝑛 = 𝑂 𝑔 𝑛 if there exist constants 𝑐

and 𝑛0 such that

𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑛0

• Note

• 𝑓 𝑛 is the actual time an algorithm would take

(real/measured time)

• 𝑔 𝑛 is the expected or theoretical time

• Big-Oh is ordered, note

• 1 = 𝑂(𝑛) for all constants 𝑐

• 𝑛 = 𝑂(𝑛 log𝑛) for all constants 𝑐

• Etc

• 𝑐 and 𝑛0 are considered Big-Oh constants

• Can figure 𝑐 by finding the smallest value such that
𝑓 𝑛

𝑔 𝑛
≤ 𝑐, 𝑛0 is where 𝑐 starts to hold

2 4 8 16

f(
n
)

f(n) g(n)

2 4 8 16

f(
n
)/

g
(n

)

DETERMINING ALGORITHM COMPLEXITY

• Count ALL operations

• Again….count ALL operations

• MAYDAY….count ALL operations

• Jokes aside, this is the easiest way. An operation will be expressed as a

function of the input size (algorithm complexity)

BINARY SEARCH TREES

• A binary search tree is a binary tree
storing entries (𝑘, 𝑒) (i.e., key-value
pairs) at its internal nodes and
satisfying the following property:

• Let 𝑢, 𝑣, and 𝑤 be three nodes such
that 𝑢 is in the left subtree of 𝑣 and 𝑤
is in the right subtree of 𝑣. Then
𝑘𝑒𝑦 𝑢 ≤ 𝑘𝑒𝑦 𝑣 ≤ 𝑘𝑒𝑦 𝑤

• External nodes do not store items

• An inorder traversal of a binary

search trees visits the keys in

increasing order

6

92

41 8

SEARCH

• To search for a key k, we trace a downward

path starting at the root

• The next node visited depends on the

outcome of the comparison of k with the key

of the current node

• If we reach a leaf, the key is not found

• Example: find(4)

• Algorithms for floorEntry and

ceilingEntry are similar

Algorithm Search(𝑘, 𝑣)
1. if 𝑣. isExternal
2. return 𝑣
3. if 𝑘 < 𝑣. key

4. return Search 𝑘, 𝑣. left

5. else if 𝑘 = 𝑣. key
6. return v

7. else //𝑘 > 𝑣. key()

8. return Search 𝑘, 𝑣. right

6

92

41 8

<

>

=

INSERTION

• To perform operation put(𝑘, 𝑣), we search

for key 𝑘 (using Search(𝑘))

• Assume 𝑘 is not already in the tree, and let

let 𝑤 be the leaf reached by the search

• We insert 𝑘 at node 𝑤 and expand 𝑤 into

an internal node

• Example: insert 5

6

92

41 8

<

>

>

w

6

92

41 8

5
w

EXERCISE
BINARY SEARCH TREES

• Insert into an initially empty binary search tree items with the
following keys (in this order). Draw the resulting binary search tree

• 30, 40, 24, 58, 48, 26, 11, 13

DELETION

• To perform operation erase 𝑘 , we search

for key 𝑘

• Assume key 𝑘 is in the tree, and let 𝑣 be the

node storing 𝑘

• If node 𝑣 has a leaf child 𝑤, we remove 𝑣

and 𝑤 from the tree with operation

removeAboveExternal 𝑤 , which removes

𝑤 and its parent

• Example: remove 4

6

92

51 8

6

92

41 8

5

v

w

<

>

DELETION (CONT.)

• We consider the case where the key 𝑘 to be
removed is stored at a node 𝑣 whose
children are both internal

• we find the internal node 𝑤 that follows 𝑣
in an inorder traversal

• we copy 𝑤. key into node 𝑣

• we remove node 𝑤 and its left child 𝑧
(which must be a leaf) by means of
operation removeAboveExternal(𝑧)

• Example: remove 3
5

1

8

6 9

v

2

3

1

8

6 9

5

v

w

z

2

EXERCISE
BINARY SEARCH TREES

• Insert into an initially empty binary search tree items with the
following keys (in this order). Draw the resulting binary search tree

• 30, 40, 24, 58, 48, 26, 11, 13

• Now, remove the item with key 30. Draw the resulting tree

• Now remove the item with key 48. Draw the resulting tree.

PERFORMANCE

• Consider an ordered map with 𝑛
items implemented by means of a
binary search tree of height ℎ
• Space used is 𝑂 𝑛

• Methods find 𝑘 , floorEntry(𝑘),
ceilingEntry 𝑘 , put 𝑘, 𝑣 , and
erase 𝑘 take 𝑂 ℎ time

• The height ℎ is 𝑂(𝑛) in the worst
case and 𝑂 log 𝑛 in the best case

AVL TREES

6

3 8

4

v

z

AVL TREE DEFINITION

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

• AVL trees are balanced

• An AVL Tree is a binary search tree

such that for every internal node 𝑣

of 𝑇, the heights of the children of 𝑣

can differ by at most 1

An example of an AVL tree where the

heights are shown next to the nodes:

HEIGHT OF AN AVL TREE

• Fact: The height of an AVL tree storing 𝑛 keys is 𝑂 log𝑛 .

• Proof: Let us bound 𝑛 ℎ : the minimum number of internal nodes of an AVL tree of height ℎ.

• We easily see that 𝑛 1 = 1 and 𝑛 2 = 2

• For 𝑛 > 2, an AVL tree of height ℎ contains the root node, one AVL subtree of height ℎ − 1 and another of

height ℎ − 2.

• That is, 𝑛 ℎ = 1 + 𝑛 ℎ − 1 + 𝑛 ℎ − 2

• Knowing 𝑛 ℎ − 1 > 𝑛 ℎ − 2 , we get 𝑛 ℎ > 2𝑛 ℎ − 2 . So

• 𝑛 ℎ > 2𝑛 ℎ − 2 > 4𝑛 ℎ − 4 > 8𝑛 𝑛 − 6 ,… (by induction),

• 𝑛 ℎ > 2𝑖𝑛 ℎ − 2𝑖

• Solving the base case we get: 𝑛 ℎ > 2
ℎ

2
−1

• Taking logarithms: ℎ < 2 log𝑛(ℎ) + 2

• Thus the height of an AVL tree is 𝑂(log 𝑛)

3

4 n(1)

n(2)

INSERTION IN AN AVL TREE

• Insertion is as in a binary search tree

• Always done by expanding an external node.

• Example insert 54:

Before Insertion

44

17 78

32 50 88

48 62

After Insertion

44

17 78

32 50 88

48 62

54

TRINODE RESTRUCTURING
• let (𝑎, 𝑏, 𝑐) be an inorder listing of 𝑥, 𝑦, 𝑧

• perform the rotations needed to make 𝑏 the topmost node of the three

b=y

a=z

c=x

T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3

b=x

c=ya=z

T0 T1 T2 T3

case 1: single rotation

(a left rotation about a)

case 2: double rotation

(a right rotation about c,

then a left rotation about a)

(other two cases

are symmetrical)

INSERTION EXAMPLE, CONTINUED

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z

2

3

4

5

6

7

1

unbalanced...

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1

54

1

T0 T1

T2

T3

x

y z

...balanced

1

2

3

4

5

6

7

T1

RESTRUCTURING
SINGLE ROTATIONS

T0

T1

T2

T3

c = x

b = y

a = z

T0 T1 T2

T3

c = x

b = y

a = z
single rotation

T3

T2

T1

T0

a = x

b = y

c = z

T0T1T2

T3

a = x

b = y

c = z
single rotation

RESTRUCTURING
DOUBLE ROTATIONS

double rotationa = z

b = x

c = y

T0

T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0

T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

EXERCISE
AVL TREES

• Insert into an initially empty AVL tree items with the following keys (in this

order). Draw the resulting AVL tree

• 30, 40, 24, 58, 48, 26, 11, 13

REMOVAL IN AN AVL TREE

• Removal begins as in a binary search tree, which means the node removed

will become an empty external node. Its parent, 𝑤, may cause an imbalance.

• Example: 44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion

remove 32

REBALANCING AFTER A REMOVAL

• Let 𝑧 be the first unbalanced node encountered while travelling up the tree from 𝑤 (parent of
removed node) . Also, let 𝑦 be the child of 𝑧 with the larger height, and let 𝑥 be the child of
𝑦 with the larger height.

• We perform restructure(𝑥) to restore balance at 𝑧.

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

REBALANCING AFTER A REMOVAL

• As this restructuring may upset the balance of another node higher in the tree,

we must continue checking for balance until the root of 𝑇 is reached

• This can happen at most 𝑂(log 𝑛) times. Why?

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

EXERCISE
AVL TREES

• Insert into an initially empty AVL tree items with the following keys (in this

order). Draw the resulting AVL tree

• 30, 40, 24, 58, 48, 26, 11, 13

• Now, remove the item with key 48. Draw the resulting tree

• Now, remove the item with key 58. Draw the resulting tree

RUNNING TIMES FOR AVL TREES

• A single restructure is 𝑂(1) – using a linked-structure binary tree

• find 𝑘 takes 𝑂 log 𝑛 time – height of tree is 𝑂 log 𝑛 , no restructures needed

• put 𝑘, 𝑣 takes 𝑂 log 𝑛 time

• Initial find is 𝑂 log 𝑛

• Restructuring up the tree, maintaining heights is 𝑂 log 𝑛

• erase 𝑘 takes 𝑂 log 𝑛 time

• Initial find is 𝑂 log 𝑛

• Restructuring up the tree, maintaining heights is 𝑂 log 𝑛

OTHER TYPES OF SELF-BALANCING TREES

• Splay Trees – A binary search tree which uses an

operation splay 𝑥 to allow for amortized complexity

of 𝑂 log 𝑛

• 2, 4 Trees – A multiway search tree where every

node stores internally a list of entries and has 2, 3, or

4 children. Defines self-balancing operations

• Red-Black Trees – A binary search tree which colors

each internal node red or black. Self-balancing

dictates changes of colors and required rotation

operations

9

10 142 5 7

9

154

62 12

7

21

