

CHAPTER 10 SEARCH TREES

 \mathbf{O}

0

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

A BRIEF NOTE ON ALGORITHM COMPLEXITY (ASYMPTOTIC COMPLEXITY)

- A function f(n) = O(g(n)) if there exist constants cand n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$
- Note

- f(n) is the actual time an algorithm would take (real/measured time)
- g(n) is the expected or theoretical time
- Big-Oh is ordered, note
 - 1 = O(n) for all constants *c*
 - $n = O(n \log n)$ for all constants c
 - Etc
- c and n_0 are considered Big-Oh constants
 - Can figure c by finding the smallest value such that $\frac{f(n)}{g(n)} \leq c$, n_0 is where c starts to hold

DETERMINING ALGORITHM COMPLEXITY

• Count ALL operations

 \mathcal{O}

Q

 \bigcirc

- Again....count ALL operations
- MAYDAY....count ALL operations

 Jokes aside, this is the easiest way. An operation will be expressed as a function of the input size (algorithm complexity)

BINARY SEARCH TREES

- A binary search tree is a binary tree storing entries (k, e) (i.e., key-value pairs) at its internal nodes and satisfying the following property:
 - Let u, v, and w be three nodes such that u is in the left subtree of v and wis in the right subtree of v. Then $key(u) \le key(v) \le key(w)$
- External nodes do not store items

 An inorder traversal of a binary search trees visits the keys in increasing order

SEARCH

- To search for a key k, we trace a downward path starting at the root
- The next node visited depends on the outcome of the comparison of k with the key of the current node
- If we reach a leaf, the key is not found
- Example: find(4)
- Algorithms for floorEntry() and ceilingEntry() are similar

Algorithm Search(k, v)1. if v. isExternal() 2. return v3. if k < v. key() 4. return Search(k, v. left()) 5. else if k = v. key() 6. return v7. else //k > v. key() 8. return Search(k, v. right())

8

Z

INSERTION

O

 \bigcirc

 \bigcirc

6

- To perform operation put(k, v), we search for key k (using Search(k))
- Assume k is not already in the tree, and let let w be the leaf reached by the search
- We insert k at node w and expand w into an internal node
- Example: insert 5

EXERCISE BINARY SEARCH TREES

Q

 \bigcirc

Insert into an initially empty binary search tree items with the following keys (in this order). Draw the resulting binary search tree
30, 40, 24, 58, 48, 26, 11, 13

DELETION

 \bigcirc

 \bigcirc

Q

- To perform operation erase(k), we search for key k
- Assume key k is in the tree, and let v be the node storing k
- If node v has a leaf child w, we remove v and w from the tree with operation removeAboveExternal(w), which removes w and its parent
- Example: remove 4

DELETION (CONT.)

- We consider the case where the key k to be removed is stored at a node v whose children are both internal
 - we find the internal node w that follows v in an inorder traversal
 - we copy w. key() into node v
 - we remove node w and its left child z (which must be a leaf) by means of operation removeAboveExternal(z)
- Example: remove 3

EXERCISE BINARY SEARCH TREES

- Insert into an initially empty binary search tree items with the following keys (in this order). Draw the resulting binary search tree
 30, 40, 24, 58, 48, 26, 11, 13
- Now, remove the item with key 30. Draw the resulting tree
- Now remove the item with key 48. Draw the resulting tree.

PERFORMANCE

- Consider an ordered map with n items implemented by means of a binary search tree of height h
 - Space used is O(n)
 - Methods find(k), floorEntry(k), ceilingEntry(k), put(k, v), and erase(k) take O(h) time
- The height h is O(n) in the worst case and $O(\log n)$ in the best case

Q

Q

AVL TREES

Ø

AVL TREE DEFINITION

D

6

An example of an AVL tree where the heights are shown next to the nodes:

- AVL trees are balanced
- An AVL Tree is a binary search tree such that for every internal node vof T, the heights of the children of vcan differ by at most 1

HEIGHT OF AN AVL TREE

- Fact: The height of an AVL tree storing n keys is $O(\log n)$.
- Proof: Let us bound n(h): the minimum number of internal nodes of an AVL tree of height h.
- We easily see that n(1) = 1 and n(2) = 2
- For n > 2, an AVL tree of height h contains the root node, one AVL subtree of height h 1 and another of height h 2.
- That is, n(h) = 1 + n(h-1) + n(h-2)
- Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
 - n(h) > 2n(h-2) > 4n(h-4) > 8n(n-6), ... (by induction),
 - $n(h) > 2^i n(h-2i)$

Q

- Solving the base case we get: $n(h) > 2^{\frac{n}{2}-1}$
- Taking logarithms: $h < 2 \log n(h) + 2$
- Thus the height of an AVL tree is $O(\log n)$

INSERTION IN AN AVL TREE

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example insert 54:

O

 \bigcirc

O

6

TRINODE RESTRUCTURING

- let (a, b, c) be an inorder listing of x, y, z
- perform the rotations needed to make b the topmost node of the three

ρ

 \bigcirc

 \bigcirc

 \mathcal{O}

6

 \bigcirc

 \bigcirc

INSERTION EXAMPLE, CONTINUED

Ç

RESTRUCTURING SINGLE ROTATIONS

6

 \bigcirc

O

 \mathcal{O}

6

Ċ

 \bigcirc

RESTRUCTURING DOUBLE ROTATIONS

6

 \bigcirc

 \bigcirc

O

6

Ċ

EXERCISE AVL TREES

 \mathbf{O}

 \bigcirc

 \bigcirc

O

9

 \bigcirc

 \bigcirc

 Insert into an initially empty AVL tree items with the following keys (in this order). Draw the resulting AVL tree

• 30, 40, 24, 58, 48, 26, 11, 13

REMOVAL IN AN AVL TREE

 \bigcirc

 \bullet

 \mathcal{O}

6

• Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, *W*, may cause an imbalance.

REBALANCING AFTER A REMOVAL

- Let z be the first unbalanced node encountered while travelling up the tree from w (parent of removed node). Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.
- We perform restructure(x) to restore balance at z.

REBALANCING AFTER A REMOVAL

D

 \bigcirc

6

- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached
 - This can happen at most $O(\log n)$ times. Why?

EXERCISE AVL TREES

O

Q

 \bigcirc

- Insert into an initially empty AVL tree items with the following keys (in this order). Draw the resulting AVL tree
 - 30, 40, 24, 58, 48, 26, 11, 13
- Now, remove the item with key 48. Draw the resulting tree
- Now, remove the item with key 58. Draw the resulting tree

RUNNING TIMES FOR AVL TREES

- A single restructure is O(1) using a linked-structure binary tree
- find(k) takes $O(\log n)$ time height of tree is $O(\log n)$, no restructures needed
- put(k, v) takes $O(\log n)$ time
 - Initial find is $O(\log n)$

- Restructuring up the tree, maintaining heights is $O(\log n)$
- erase(k) takes $O(\log n)$ time
 - Initial find is $O(\log n)$
 - Restructuring up the tree, maintaining heights is $O(\log n)$

OTHER TYPES OF SELF-BALANCING TREES

10 14

6

15

Splay Trees – A binary search tree which uses an operation splay(x) to allow for amortized complexity of O(log n)

- (2,4) Trees A multiway search tree where every node stores internally a list of entries and has 2, 3, or 4 children. Defines self-balancing operations
- Red-Black Trees A binary search tree which colors each internal node red or black. Self-balancing dictates changes of colors and required rotation operations