

CHAPTER 10 SEARCH TREES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

A BRIEF NOTE ON ALGORITHM COMPLEXITY (ASYMPTOTIC COMPLEXITY)

- A function $f(n)=O(g(n))$ if there exist constants c and n_{0} such that $f(n) \leq c g(n)$ for all $n \geq n_{0}$
- Note
- $f(n)$ is the actual time an algorithm would take (real/measured time)
- $g(n)$ is the expected or theoretical time
- Big-Oh is ordered, note
- $1=O(n)$ for all constants c
- $n=O(n \log n)$ for all constants c
- Etc
- c and n_{0} are considered Big-Oh constants
- Can figure c by finding the smallest value such that $\frac{f(n)}{g(n)} \leq c, n_{0}$ is where c starts to hold

2

DETERMINING ALGORITHM COMPLEXITY

- Count ALL operations
- Again....count ALL operations
- MAYDAY....count ALL operations
- Jokes aside, this is the easiest way. An operation will be expressed as a function of the input size (algorithm complexity)

BINARY SEARCH TREES

- A binary search tree is a binary tree storing entries (k, e) (i.e., key-value pairs) at its internal nodes and satisfying the following property:
- Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. Then $k e y(u) \leq \operatorname{key}(v) \leq \operatorname{key}(w)$
- External nodes do not store items
- An inorder traversal of a binary search trees visits the keys in increasing order

- To search for a key k, we trace a downward path starting at the root
- The next node visited depends on the outcome of the comparison of k with the key of the current node
- If we reach a leaf, the key is not found
- Example: find(4)
- Algorithms for floorEntry () and ceilingEntry () are similar

Algorithm Search (k, v)

1. if v. isExternal()
2. return v
3. if $k<v$. $\operatorname{key}(\quad)$
4. return $\operatorname{Search}(k, v$.left($))$
5. else if $k=v$. $\operatorname{key}(\quad)$
6. return v
7. else $/ / k>v . \operatorname{key}()$
8. return $\operatorname{Search}(k, v \cdot \operatorname{right}(\quad))$

INSERTION

- To perform operation put(k, v), we search for key k (using Search (k))
- Assume k is not already in the tree, and let let w be the leaf reached by the search
- We insert k at node w and expand w into an internal node
- Example: insert 5

EXERCISE
 BINARY SEARCH TREES

- Insert into an initially empty binary search tree items with the following keys (in this order). Draw the resulting binary search tree
- 30, 40, 24, 58, 48, 26, 11,13

DELETION

- To perform operation erase (k), we search for key k
- Assume key k is in the tree, and let v be the node storing k
- If node v has a leaf child w, we remove v and w from the tree with operation removeAboveExternal (w), which removes w and its parent
- Example: remove 4

DELETION (CONT.)

- We consider the case where the key k to be removed is stored at a node v whose children are both internal
- we find the internal node w that follows v in an inorder traversal
- we copy w. key () into node v
- we remove node w and its left child z (which must be a leaf) by means of operation removeAboveExternal((z)
- Example: remove 3

EXERCISE BINARY SEARCH TREES

- Insert into an initially empty binary search tree items with the following keys (in this order). Draw the resulting binary search tree
- 30, 40, 24, 58, 48, 26, 11,13
- Now, remove the item with key 30. Draw the resulting tree
- Now remove the item with key 48. Draw the resulting tree.

PERFORMANCE

- Consider an ordered map with n items implemented by means of a binary search tree of height h
- Space used is $O(n)$
- Methods find (k), floorEntry (k), ceilingEntry (k), put (k, v), and erase (k) take $O(h)$ time
- The height h is $O(n)$ in the worst case and $O(\log n)$ in the best case

AVL TREES

AVL TREE DEFINITION

An example of an AVL tree where the heights are shown next to the nodes:

- AVL trees are balanced
- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1

HEIGHT OF AN AVL TREE

- Fact: The height of an AVL tree storing n keys is $O(\log n)$.
- Proof: Let us bound $n(h)$: the minimum number of internal nodes of an AVL tree of height h.
- We easily see that $n(1)=1$ and $n(2)=2$
- For $n>2$, an AVL tree of height h contains the root node, one AVL subtree of height $h-1$ and another of height $h-2$.
- That is, $n(h)=1+n(h-1)+n(h-2)$
- Knowing $n(h-1)>n(h-2)$, we get $n(h)>2 n(h-2)$. So
- $n(h)>2 n(h-2)>4 n(h-4)>8 n(n-6)$, ... (by induction),
- $n(h)>2^{i} n(h-2 i)$
- Solving the base case we get: $n(h)>2^{\frac{h}{2}-1}$
- Taking logarithms: $h<2 \log n(h)+2$
- Thus the height of an AVL tree is $O(\log n)$

INSERTION IN AN AVL TREE

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example insert 54:

TRINODE RESTRUCTURING

- let (a, b, c) be an inorder listing of x, y, z
- perform the rotations needed to make b the topmost node of the three

RESTRUCTURING

 SINGLE ROTATIONS

RESTRUCTURING double rotations

EXERCISE AVL TREES

- Insert into an initially empty AVL tree items with the following keys (in this order). Draw the resulting AVL tree
- $30,40,24,58,48,26,11,13$

REMOVAL IN AN AVL TREE

- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.
- Example:

REBALANCING AFTER A REMOVAL

- Let Z be the first unbalanced node encountered while travelling up the tree from w (parent of removed node). Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.
- We perform restructure (x) to restore balance at z.

REBALANCING AFTER A REMOVAL

- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached
- This can happen at most $O(\log n)$ times. Why?

EXERCISE AVL TREES

- Insert into an initially empty AVL tree items with the following keys (in this order). Draw the resulting AVL tree
- $30,40,24,58,48,26,11,13$
- Now, remove the item with key 48. Draw the resulting tree
- Now, remove the item with key 58. Draw the resulting tree

RUNNING TIMES FOR AVL TREES

- A single restructure is $O(1)$ - using a linked-structure binary tree
- find (k) takes $O(\log n)$ time - height of tree is $O(\log n)$, no restructures needed
- put (k, v) takes $O(\log n)$ time
- Initial find is $O(\log n)$
- Restructuring up the tree, maintaining heights is $O(\log n)$
- erase (k) takes $O(\log n)$ time
- Initial find is $O(\log n)$
- Restructuring up the tree, maintaining heights is $O(\log n)$

OTHER TYPES OF SELF-BALANCING TREES

- Splay Trees - A binary search tree which uses an operation $\operatorname{splay}(x)$ to allow for amortized complexity of $O(\log n)$
- $(2,4)$ Trees - A multiway search tree where every node stores internally a list of entries and has 2, 3, or
 4 children. Defines self-balancing operations
- Red-Black Trees - A binary search tree which colors each internal node red or black. Self-balancing dictates changes of colors and required rotation operations

