CHAPTER 10
SEARCH TREES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH
DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND
MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

(ASYMPTOTIC COMPLEXITY) {

K\)A BRIEF NOTE ON ALGORITHM COMPLEXITY /

* A function f(n) = O(g(n)) if there exist constants ¢
O and ng such that
f(n) <cg(n) foralln = n,

f(n)

®* Note
* f(n) is the actual time an algorithm would take , | | |
(real/measured time) 2 4 8 16
* g(n) is the expected or theoretical time f(n) 9(n)

® Big-Oh is ordered, note
Cf * 1= 0(n) for all constants ¢
O

* n=0(nlogn) for all constants ¢

f(n)/gln)

® Etc

® ¢ and ng are considered Big-Oh constants

® Can figure ¢ by finding the smallest value such that

f < ¢, ng is where c starts to hold
gn)

1\\5 DETERMINING ALGORITHM COMPLEXITY {

/
O

® Count ALL operations

® Again....count ALL operations
l ®* MAYDAY....count ALL operations

Cf o * Jokes aside, this is the easiest way. An operation will be expressed as a

function of the input size (algorithm complexity)

1§ BINARY SEARCH TREES

O

* A binary search tree is a binary tree
storing entries (k, e) (i.e., key-value
pairs) at its internal nodes and
satisfying the following property:

®* Let u, v, and w be three nodes such
that U is in the left subtree of v and w
is in the right subtree of v. Then

Cf key(u) < key(v) < key(w)
O

®* External nodes do not store items

® An inorder traversal of a binary

search trees visits the keys in

increasing order

O

[o

1\0 SEARCH

To search for a key k, we trace a downward
path starting at the root

The next node visited depends on the
outcome of the comparison of k with the key
of the current node

If we reach a leaf, the key is not found
Example: find(4)

Algorithms for and
are similar

Algorithm Search(k, v)
1. if v.isExternal()
return v

if k < v.key()
return Search(k, v.left())
else if k = v.key()

refurn v

else //k > v.key()
return Search(k, v. right())

o N O O

INSERTION

®* To perform operation , we search
for key k (using Search(k))

* Assume k is not already in the tree, and let

let w be the leaf reached by the search

* We insert k at node w and expand w into

an internal node

®* Example: insert 5

LN
\

O

!
[o

EXERCISE f
BINARY SEARCH TREES

® Insert into an initially empty binary search tree items with the
following keys (in this order). Draw the resulting binary search tree
® 30, 40, 24, 58, 48, 26,11, 13

O

[o

1\) DELETION

To perform operation , we search
for key k

Assume key k is in the tree, and let v be the

node storing k

If node v has a leaf child w, we remove v
and w from the tree with operation
removeAboveExternal(w), which removes
W and its parent

Example: remove 4

1\\5 DELETION (CONT.)

®* We consider the case where the key k to be
removed is stored at a node v whose
children are both internal

* we find the internal node w that follows v

in an inorder traversal
l * we copy w.key() into node v

®* we remove node W and its left child z
(which must be a leaf) by means of
T operation removeAboveExternal(z) \
O .

Example: remove 3

EXERCISE
BINARY SEARCH TREES

® Insert into an initially empty binary search tree items with the
following keys (in this order). Draw the resulting binary search tree
® 30, 40, 24, 58, 48, 26,11, 13

®* Now, remove the item with key 30. Draw the resulting tree

®* Now remove the item with key 48. Draw the resulting tree.

PERFORMANCE

® Consider an ordered map with n
items implemented by means of a
binary search tree of height h

* Space used is 0(n)

* Methods find(k), floorEntry(k),
ceilingEntry(k), put(k, v), and
erase(k) take O(h) time

® The height h is O(n) in the worst
case and O(logn) in the best case

1\\5 AVL TREE DEFINITION

O

® AVL trees are balanced

® An is a binary search tree

such that for every internal node v
of T, the

An example of an AVL tree where the
heights are shown next to the nodes:

HEIGHT OF AN AVL TREE

® Fact: The height of an AVL tree storing n keys is O(logn).
® Proof: Let us bound n(h): the minimum number of internal nodes of an AVL tree of height h.
®* We easily see that n(1) = 1 and n(2) = 2

®* Forn > 2, an AVL tree of height h contains the root node, one AVL subtree of height h — 1 and another of
height h — 2.

®* Thatis, n(h) =1+n(th—1) + n(th— 2)

* Knowing n(h — 1) > n(h — 2), we get n(h) > 2n(h — 2). So
* n(h) >2n(h—2) >4n(h —4) > 8n(n — 6), ... (by induction),
* n(h) > 2'n(h — 2i)

h
* Solving the base case we get: n(h) > 227"

* Taking logarithms: h < 2logn(h) + 2
* Thus the height of an AVL tree is O(logn)

%

INSERTION IN AN AVL TREE

® Insertion is as in a binary search tree
* Always done by expanding an external node.
®* Example insert 54:

After Insertion

Before Insertion

1§ TRINODE RESTRUCTURING

* let (a, b, c) be an inorder listing of x,y, zZ

O * perform the rotations needed to make b the topmost node of the three

(other two cases

are symmetrical) case 2: double rotation

(a right rotation about c,
then a left rotation about a)

N

.

case 1: single rotation
(a left rotation about a)

%

INSERTION EXAMPLE, CONTINUED

\l RESTRUCTURING
1 SINGLE ROTATIONS
O

Q RESTRUCTURING
1 DOUBLE ROTATIONS

O

EXERCISE
AVL TREES

® Insert into an initially empty AVL tree items with the following keys (in this
order). Draw the resulting AVL tree
* 30, 40, 24, 58, 48, 26,11, 13

1§ REMOVAL IN AN AVL TREE

O

® Removal begins as in a binary search tree, which means the node removed

will become an empty external node. Its parent, w, may cause an imbalance.

l ® Example: remove 32
ﬁ
\

/ before deletion of 32 after deletion

O

1§ REBALANCING AFTER A REMOVAL f

O ® Let zZ be the first unbalanced node encountered while travelling up the tree from w (parent of
removed node) . Also, let y be the child of z with the larger height, and let x be the child of

y with the larger height.

* We perform restructure(x) to restore balance at z.

C=X

1§ REBALANCING AFTER A REMOVAL

O
® As this restructuring may upset the balance of another node higher in the tree,

we must continue checking for balance until the root of T is reached

* This can happen at most O (logn) times. Why?

LN
\

O

[o

EXERCISE f
AVL TREES

® Insert into an initially empty AVL tree items with the following keys (in this
order). Draw the resulting AVL tree
* 30, 40, 24, 58, 48, 26,11, 13

®* Now, remove the item with key 48. Draw the resulting tree

®* Now, remove the item with key 58. Draw the resulting tree

1\\5 RUNNING TIMES FOR AVL TREES

O

* A — using a linked-structure binary tree
takes time — height of tree is O(logn), no restructures needed

takes time

Initial find is O (logn)

O_/

Restructuring up the tree, maintaining heights is O (logn)

takes time

Initial find is O (logn)

/p

Restructuring up the tree, maintaining heights is O (logn)

OTHER TYPES OF SELF-BALANCING TREES (

* Splay Trees — A binary search tree which uses an o

operation splay(x) to allow for amortized complexity

of O(logn) @ 10 14

® (2,4) Trees — A multiway search tree where every

node stores internally a list of entries and has 2, 3, or

4 children. Defines self-balancing operations

®* Red-Black Trees — A binary search tree which colors 5 : T A
each internal node red or black. Self-balancing
dictates changes of colors and required rotation

operations

